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Stochastic cellular automata model for stock market dynamics
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In the present work we introduce a stochastic cellular automata model in order to simulate the dynamics of
the stock market. A direct percolation method is used to create a hierarchy of clusters of active traders on a
two-dimensional grid. Active traders are characterized by the decision toshtis +1, or sell,o;(t)=-1, a
stock at a certain discrete time step. The remaining cells are inaetitg=0. The trading dynamics is then
determined by the stochastic interaction between traders belonging to the same cluster. Extreme, intermittent
events, such as crashes or bubbles, are triggered by a phase transition in the state of the bigger clusters present
on the grid, where almost all the active traders come to share the same spin orientation. Most of the stylized
aspects of the financial market time series, including multifractal proprieties, are reproduced by the model. A
direct comparison is made with the daily closures of the S&P500 index.
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[. INTRODUCTION the time series of daily closures of the S&P500 index
. I 18-25 over a period of about 50 years.
Since the successful application of the BIack—Scholeé Moraeover, reF():entIy, the fractal p?/operti[agﬁ] of the price

theory for option pricing(1] in 1973 more and more physi- fluctuations have also been investigated for different markets

E'S;S havefktﬁen attkratc(tjed by the |E{1Iea of ;mdersltanqu[ t;?7_3q' A common feature found in these studies is the
enhavior of the market dynamics Iin terms of COMpIex SySten;siance of g nonlinear, multifractal spectrum that excludes

theory, whjre slelf—qrganltzeci cr:t|cal_||_t|%,3] _and fsttr?cha§t|c the possibility ofefficient markebehavior[31]. The origin of
processeg4,5] play important roles. The aim of the micro- the multifractality in the financial time series has also been at

scopiq models proposed so @or general reviews see Refs. the center of discussiori82—-39. In this paper we consider
[6.7)) s to reproduce somstylized fact{8] concerning the o 1 iiifractal spectrum of the price fluctuations as a styl-
temporallfluct'uatl(')ns of the price indicd&f). In particular, ized fact of the market time series without addressing any
the logarithmic price returns question about the underlying process able to generate it. The

_ _ multifractal spectrum is used as a further test for our model.
R®=In P(t+1)~In P @) A parallel between multifractal and thermodynamical for-
and the volatility, defined in the present work as malism has also been investigated. We found, in agreement
with the previous work of Canes$a5s|, that theanalog spe-
u(t) =|R(1)], (2)  cific heatcan provide a good tool to characterize intermit-

tency, that is, financial crashes or bubbles, from a
have been studied extensivé¢l] from an empirical point of thermodynamics-equivalent point of view.
view. The results have shown that while long time correla-
tions are present in the volatility, a phenomenon known as

volatility clustering they cannot be found in the time series Il. THE MODEL
of returns. Moreover the latter show an intermittent behavior _ . _
that recalls in some aspects hydrodynamic turbul¢ea1], In the present work we simulate the financial market dy-

characterized by power law tails in the probability distribu- hamics via a stochastic cellular automata model. The agents
tion function(pdf). Microsimulations have demonstrated that of the market are represented by cells on a two-dimensional
this kind of behavior can originate both as a stochastic progrid, 512<128. Theith agent at the discrete time stefis

cess with multiplicative noisg12—14 and as a percolation characterized by three possible states or spin orientations,
phenomenof15-17. o(t)=0, £1. The valuer;(t)=+1 is associated with the pur-

In order to reproduce these features of real markets wehase of a stock whiler;(t)=—1 with selling. The former
introduce a stochastic cellular automata model, representingfates are calledctive The cells with spin value;(t)=0 are
anopenmarket. That is, a market where the numbeaciive  inactivetraders. The active traders herdristworksor clus-
traders, defined as cells with spin state different from Oters via a direct percolation method related tdfaest fire
namely,oi(t)=£1, evolve in time according to a percolation model [15]. The information carried by the active traders,
dynamics. The percolation dynamics is chosen in order tdhat is, their spin state, is shared with the other members of
simulate the herding behavior typical of investpi8]. Ac-  the cluster. The percolation dynamics allow a time dependent
cording to this, active traders gatherdtustersor networks  herding behavior and the market can be interpreted as an
where, following a stochastic exchange of information, theyopen system not bounded by conservation laws. The cluster-
formulate the trading strategy for the next time step. Thang process will be discussed in detail in the following sec-
results obtained by the simulations are then compared wittion.
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The trading dynamics is instead related to the synchro- 20000— P, =0.0493
nous update of the spins of the active traders, ruled by & e P,=0.0490

T T T T T T T
stochastic exchange of information between them, similarto |-~ p,=0.0488 M WI\” M N/ V\

a random Ising modef12,13. A particular feature of the 15000 (- p;=0.0485

present simulation is that the information is not spread all ]
over the grid, as in other multiagent scenalfiv®,13, but it 10000[ w‘.w oo AW M.W‘M"f

AWWJWWV e
%”WWWMMWM

is limited by the clusters of interaction previously defined.
The mechanism for the spin dynamics is explained in Sec.
Il B.
A. Percolation clustering MWMW”MMM,W
One of the aims of our cellular automata model is to re- 0 . ! . ! . ! . ! —
produce thénerding behavioof active trader$18]. We refer 0 2000 e Stepgﬂoﬂ 8000 10000
to herding behavior as the tendency of people involved in the
market to aggregate in networks or clusters of influence. The 00g T T —
traders then use the information obtained by their network in i
order to formulate a market strategy. Even if the topological [
structure of these networks of information is not important,
since several kinds of long range interaction are available E
nowadays[13], the number of connections for each trader i .,
must be, in any case, finite and not extended over the whole s 1
market. In this framework a direct percolation method is 10k 4
used to simulate herding dynamics between active traders. | : B ]
we assume that the neighbors of influence are those of vol L T e .
Neumann(up, down, left, right, the percolation is fixed by - sy e
the following parameters. 1 ceceme --‘i‘w;--- eucer
pn: the probability that an active trader can turn one of his Eol 0l
inactive neighbors into an active one at the next time step, ! 10 S 100 1000
oi(t)=0— oy(t+1)==1. This simulates the fact that certain
information possessed by a trader may inducpogential FIG. 1. Top: Different values of the parametdrproduce dif-
trader to join the market dynamics. fergnt activities of traders on the grid. Bottom: Cluster size distri-
pq: the probability that an active tradeliffusesand so ~ Pution forp,=0.0485 att=9000.
becomes inactiveg;(t)=+1— o;(t+1) =0, if it has at least
one inactive neighbor. This mimics the fact that only tradersnecessary if we are to take into account a real aspect of the
at the borders of a network, that is, the weaker links, can quimarket, namely, that different traders also have different
the market. trading powers. A reasonable assumption is that people hav-
pe: the probability that a nontrading cell spontaneouslying a larger number of sources of information, so belonging
decides to enter the market dynamieg(t)=0— o;(t+1) to greater clusters, can be associated with professional inves-
=+1. tors that, most likely, are able to move a greater amount of
The values of the adimensional parametggspy, andp,, stocks compared to the occasional investor. Using this as-
influence the stability of the system and the percentage c3umption we are able to define a proper weight for the trad-
active traders on the grid. In order to test different marketng power of different cells, as we will discuss in the follow-
activities we fix the valuepy=0.05 andp,=0.0001 while we  ing section.
tune the parametgs;,. At the beginning of the simulation the A similar percolation model has also been used to repro-
grid is loaded randomly with a small percentage of activeduce some statistical and geometrical features of solar activ-
traders and then the system is permitted to evolve accordin@y [36,37.
to the previous rules. If we are in a stable range of the pa-
rameterp,, after a transient period that depends both on the
parameter values and the initial number of active cells, the
number of active traders on the grid begins to fluctuate The dynamics of the spins of the active trades(t)
around a certain average, as shown in Figtop). The mar- ==1 fori=1,... NXt) (where the superscrif, from now
ket can be consideredpen since the number of agents on, refers to théth cluster of the grid configuration at time
changes dynamically in time. In this regime, the competitionstept) follows a stochastic process that mimics the human
between herding and diffusion produces a power law distriuncertainty in decision makingl3]. Their values are up-
bution of the cluster size, as shown in Fig.(fiottom), dated synchronously according to a local probabilistic rule:
p(S)=~S™, whereSis the cluster dimension, defined as the of(t+1)=+1 with probabilitypf ando¥(t+1)=-1 with prob-
number of active cells belonging to the same cluster, anébility 1—pik. The probabilityp!‘ is determined, by analogy to
A>0, creating a hierarchy of networks. This hierarchy isheat bath dynamics with formal temperatlgd@=1, by

f Active Traders

[}

Number
(5.3
=
=)

100 3

B. Stochastic trading dynamics
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1 10 T T T T T T

Kty —
pi (t) - 1 +e_2|ik(t),

where the local fieldX(t) is

1 NK () I
Koy _ K Kk K ; . I ! 1 . 1 . !
11t = —— > Ajol(t) +hf. (4) 150 1960 1970 . 1980 1990 2000
N (t) j=1 10 : Degimal Years .

A!j(t) are time dependent interaction strengths betweer s
agents andﬂ‘(t) is an external field reflecting the effect of
the environmen{13]. The interaction strengths and the ex-

ternal field change randomly in time according »Rﬁ(t) -5

=Ag(t)+an;(t) and hi(t)=hi(t). The variablestX(t) 7;(t), ol 1 . . | .

and £(t) are random variables uniformly distributed in the 2000 00 ime S 8000 10000
interval (-=1,1) with no correlation in time or space. The

measure of the strengths of the previous terAs, andh, FIG. 2. Top: Normalized logarithmic returns for the S&P500.
are constant and common for all the grid. Bottom: Time series of returns reproduced with the simulation with

In this contest the dynamics of the price indeft) can be  p,=0.0493,A=1.8, andh=0.
easily derived if we assume that the index variation is pro-

portional to the difference between demand and supply,  arameters. Regarding the percolation, the herding parameter

dp Pn, as previously seen, determines the concentration of active
i xP, (5 traders on the grid. For a low concentration the active traders
will be distributed in small clusters and the information will
and using a weighted average for the orientation of the spinde extremely split up on the grid. In this case large coherent
events will be more rare. A higher concentration, where clus-
o K ters of the order of a thousand cells are present, allows large
x()=82 2 Nbaf(v), (6)  events to occur with higher frequency. In fact, the phase
k=i transition of large clusters can easily trigger a crash or a
whereN(t) and Nk(t) are, respectively, the number of clus- bubble in the market. Time series related to a higher herding
ters on the grid and the size of tkéh cluster, whileBis a  parameter are therefore more intermittent. We can then infer
normalization constant. The relatid6) follows from the thata market made by small groups of traders behaves like a

assumption of proportionality between the financial powernoisy marketwhile big crashes or bubbles must necessarily
of an active cell and the size of the cluster to which itbe related to the interaction of large networks and so to a

belongs. A justification of this relation is that professional kind of crowd behavior. For most of the simulations we fixed
investors, able to move larger amounts of capital, aréhe parametep,=0.0493 in order to have bigger clusters,
more likely to be linked with a large number of other With S™{t) of the order of 2500 cells.

investors than the occasional traders. From Bywe find The strengthA also plays an important role in the trading
that the logarithm of the price returnd), that is, the dynamics. Withp, fixed, this parameter is related to the in-
fundamental quantity we aim to model, is proportional totermittency of the system. Both for large values of the activ-

Ngi(t) NK(®)

the average orientation defined in E@), R(t) = x(t). ity (A>10) and forA— 0 we observe an approach of the pdf
toward a Gaussian-like shape. That is, very large fluctuations
IIl. NUMERICAL RESULTS become more and more rare, aAdcan be regarded as a

&temporal scale for the system, similar to the activity param-

We compare the results of our model with the Standard ster in the Cont-Bouchaud modgl6]. In spite of this some

Egr? égggﬁi‘?gf) 8 Igdggszgtézggfngmg rq_%sét g;?:éyagzegn!ﬁrge fluctuations can be still identified. This is probably one

lyzed is composed of the daily indices fro11/1950 to of the main differences between the Cont-Bouchaud model
18/7/2003 for a total of 13 468 data. The time series of th nd the present. In fact Monte Carlo simulations of the

index pricesP(t) is converted into the logarithmic retur(® ormer [17] show that an increase .Of th_e activity brings a
: . . rapid convergence toward a Gaussian distribution because a
and then normalized over the time interval

large number of clusters are trading at the same time follow-
R(t) - (R(t))t ing a random procedure of decision makifith,17: there

rt)= W- ) are no clusters that can influence the market more than others

and so the resulting global interaction is noiselike. In our
where(- - -); denotes the temporal average ands the stan- model fluctuations are always allowed because of the heat
dard deviation. In this way all the sets of returns will havebath dynamics. Clusters of active traders can always be sub-
zero average ana=1. jected to phase transitions, independent of the state of other
Before discussing the results we briefly describe the beelusters, creating a displacement between demand and sup-

havior of the cellular automata with respect to changes of thely.
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FIG. 3. Probability distribution function for the S&P500 com-
puted with daily data from 3/1/1950 to 187/2003 and the model.
A Gaussian is also plotted for comparison. The parameters used are
p,=0.0493,A=1.8 andh=0.

In order to reproduce the behavior of financial time series
we work with 1.5<A<2.5. In this range there is a nonlinear
dependence of the intermittency én The value of the pa-
rametera is fixed by the relatiora=2A, already used in the
work of Krawiecki et al. [13]. However, we note that the B
ratio a/A is actually not essential in reproducing the inter- 00 100 200 300 400 500
mittency found in real data. Even the paramétatoes not ] ) ]
have a central role in the simulation, as longhasl. Infact,  'G: 4. Top: Snapshot of the grid during a normal trading pe-
the percolation dynamics of the active traders already intro[lod. The black cells are the buyers while the white ones are the

d tral noi | t of th implvhset sellers. The parameters used in this simulation @re0.0493,A
uces a natural noise. In most ot the runs we simplynse =1.8, andh=0. Bottom: The same simulation during a crash. Large

=0. ) clusters of sellers are indicated by arrows.
Now we discuss the results of the cellular automata. In

Fig. 2 (top) and Fig. 2(bottorm) the normalized logarithmic Finding a more appropriate distribution would be an impor-
returns of the S&P500 and of the simulation are shown, retant improvement in this field of researth.

spectively. The average number of active traders, in the In order to understand the trading dynamics of the au-
stable regime, is~16 000, as shown in Fig. {top). The toma}ta we qlso show two snapshot§ of the grid configuration,
model reproduces the intermittent behavior of the S&Ps0@he first during a normal session, Fig(tdp), and the second
time series, as expressed by thptokurticpdf of Fig. 3. The ~ during a crash, Fig. 4bottom. During the normal session

tails of the distribution follow a power law decay, reflecting the orientations of the spins are distributed uniformly over

the fact that large coherent events, far from the average, a}§e various clusters and thgre IS o sh_arp dn‘ference between
. ) . emand and supply. The situation is different during a crash.
likely to occur with a frequency higher than expected for a

random procesgwhere the shape would be a Gaussian In this case the clusters at the top of the hierarchy, the bigger

' . ones, play a fundamental role. In fact they undergo a phase
These large events are related to financial crashes or b“bblﬁ%nsition where the greatest part of their spins share the

of the market and, in our model, to a phase transition in th&,me orientation. The capacity of the clusters to generate a
spin state of large networks of active traders, as we Will,oherent orientation of the spins, and hence of their trading
discuss further on. From a power law fii(r)~r~*” (for  gtate, can be interpreted in terms of a multiplicative noise
r[>2), we find y=3 for both the S&P500 and the model, procesqy5,22], where the collective synchronization arises as
confirming the good agreement between the two. a result of the randomly varying interaction strengths be-
The problem of finding the best distribution describing the
price returns is a very important issue from a practical poinf 1

- ) An intriguing framework of investigation has been provided by
of view [4]. The standard Black-Scholes theory for option e ponextensive statistical mechanicgroposed by Tsallis

pricing [1,4,9 assumes that the returns are normally distrib-3g_40,23 2% A more complete discussion on this important topic

uted. This fact has been proven to be empirically false, ag beyond the scope of this paper and will be discussed in future
shown also in Fig. 3see Ref[4] for a general referenge work.
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FIG. 5. Top: Autocorrelation function for the price returns. Bot-

FIG. 6. Multifractal spectra for the S&P500 in the period

tom: Autocorrelation function for the volatilities. In both the graphs 31/1/1950 to 187/2003 (top) and the modelbottom). For the

the parameters used for the model @pe=0.0493,A=1.8, andh

=0.

groups of traders than over the whole market.

tion, defined as
T-7

() = 2 x(t+ Ix(v),
t=1

whereT is the length of the time series amds a time delay
for the normalized variable(t). The results for both the
model and the S&P500 are shown in Fig(tép) and Fig. 5

8

latter p,=0.0493,A=1.8, andh=0.

Eq. (9), is an extension of the Hurst exponétintroduced
tween agents. The peculiarity of our model is that crashes dp the context of reservoir control on the Nile river dam
bubbles(sudden price changesre related not to a phase Project, around 190726,42. This technique provides a sen-
transition of the whole markdtL2,13 but rather to a phase Sitive method for revealing long-term correlations in random
transition in one or more of the larger clusters that have &@rocesses. IH(q)=H for everyq the process is said to be
greater influence on the trading session. This behavior iglonofractal andi is equivalent to the original definition of
probably closer to the real market where the synchronizatiothe Hurst exponent. This is the case of simple Brownian
of trading opinion is more likely to happen between largemotion or fractional Brownian motion. _
If the spectrum oH(q) is not constant witly the process
The temporal correlations of the logarithmic returns andis said to be multifractal. From the definiti¢@) it is easy to
of the volatility are investigated via the autocorrelation func-see that the functioki(1) is related to the scaling properties
of the volatility. By analogy with the classical Hurst analysis,
a phenomenon is said to be persisterti{fl) >1/2 and an-

tipersistent ifH(1) <1/2. For uncorrelated increments, as in
Brownian motion,H(1)=1/2. In Fig. 6 a comparison is

shown between the multifractal spectra of the model and the

S&P500 obtained from the prices time series. It is clear that
both processes have a multifractal structure and the price
fluctuations cannot be associated with a simple random walk

(bottom), respectively. While the temporal correlation for the as in the classicafficient market hypothesj81].

returns is lost almost immediately, the volatility manifests a The multifractality of the time series can also be dis-
slow decay in time, related to the phenomenon of volatilitycussed in terms of thermodynamic equivalents, according to
clustering. The previous temporal dependencies have beenultifractal physicg43-45,25. In this approach we divide
the time seriex(t) for t=1, ... L into A/ equal subintervals.
Then we can write the following measure for each of these:

found in both real data and in the simulation.

IV. MULTIFRACTAL ANALYSIS

It is also worth pointing out that financial time series
present an inheremhultifractality [26]. In the past few years
the work of many author27—-3(Q has been addressed to the

characterization of the multifractal properties of financial
time series, and nowadays multifractality can be considere\éy
as a stylized fact. In order to study the multifractal properties
of our model we use thgeneralized Hurst exponef1],

H(q) derived via theg-order structure function,

Sy(D) = (x(t+ 1) = x(V)[%) < 797D,

9)

wherex(t) is a stochastic variable over a time interfaand

(1) =7

x(t+7) = X(1)] | 10)

> [x(t+ 1) = x()]
n=1

ithi=1,... Mandrthe time delay. The quantity;(7) can
e viewed as a normalized probability measure. The corre-
sponding generating function is given by

N

Z(qN) = 2 pi(n)% = Ve, (12)
i=1

which is an analog of the partition function in thermodynam-

7 the time delay. The generalized Hurst exponent, defined irics. According to Refl43] the scaling exponent is directly
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related to the generalized multifractal dimenslogn[26], P L S —
. N oo nsl00
__ r /"/ \\ N\ -0 1= 1
Xq= (0-1)D,. (12 - 04l Ve “ . |
If we considery, as thefree energyof our system, Eq(12) 0'2'_ /;,/ “\%\ // R ]
provides a link between the classical thermodynamical for- L x,, N N ]
malism and multifractality. Assumingl as an equivalent Opessioy | | Segeeee-godae
temperature, we can define an analog specific heat -6 -4 2 2 2 4 6
[43,45,25,48 ok T e T T T T ]
Fxq 0.4l * 'l)““\\‘o T eioo
Cy=- PyE (13 oL . O\
q yd /d 3
02+ //‘ d/ \\\‘A-~A§\‘ —
The previous equation fdC, can also be written in terms r &_/’;,a/ ‘\u_ N N
of singular measure formalisii#7]. In this framework we O_g‘*‘- “’"_'4 : '2 : (') - ; *-rj‘l‘ —
define a measure(1,t) as q
(10 = |x(t + 1) = x(t)] 14 FIG. 7. Top: Analog specific heat for the S&P500 from
anb= L-1 ) (14) 31/1/1950 to 187/2003 for two different time delays, namety,
1 ) g
—2 |X(t +1) - X(t)| =1 and7r=100. A sharp peak is clearly visible arougd-1.5. The
L-1a second peak on the right-hand side disappears increasing the tem-

h . f h .El]oral delay. TheC, curves have been computed for the logarithm of
We can then generate a series of measures on shorter | e price using the algorithm in Ref47] for K,. Bottom: Analog

tervals of lengths, e(5,1) whereé'is an integer power of 2. gpecific heat for the model with parameters-0.0493A=1.8, and
andl is the index of the first point of the subsegments at thah=0. The double-humped shaped for small temporal delays is vis-

resolution. The average measure in the intefVdk 8] is ible also here.
1+6-1
esh==> €1,% (15) second peak for low time delays, as a way to characterize
1| crashes, or in general the degree of intermittency in a time

_ ) series. The difference in the shapes and heights of the
for1=0,... L-4. In this case we have a scaling property for shorter peak for=1 is due to a slightly different correla-
the ensemble average with respect to the séale tion of the fluctuations in the two time series. Moreover,

(e(8,1)) o 57 (16) in the mode] we can link t_he shorter peak to the physical

phase transition in the spin state of a network of traders.
In a multifractal process the exponefy is a nonlinear func-
tion of g-related to the intermittency of the time series and to V. CONCLUSIONS
the generalized dimension vj48,49
In this paper we have introduced a stochastic cellular au-

(d-1)Dg=q-1-K,. (17)  tomata model for the dynamics of the financial markets. The
main difference between our model and other stochastic
From Egs.(13) and(17) we have thaf46], simulations based on spin orientation of agdts 13 is the
PK temporal evolution of the networks of interaction and there-
q= _qa R (18) fore the concept of an open market. The active traders follow

a direct percolation dynamics in order to aggregate in net-
Following Ref.[25] we have found the analog specific heat works of information. This makes our simulation, even if
for both the S&P500 and for the price time series generateditill a raw approximation, surely closer to the real market,
by our model, see Fig. 7. For=1 we observe a double- where no conservation rules for the number of agents can be
humped shape for both the model and the empirical data. laimed. Crashes and bubbles can be interpreted as a syn-
we take longer-time delays the shoulder on the right-handhronization of the spin orientation of the more influential
side disappears, leaving only a sharp peak, similar to a firstaetworks in the market. Moreover, the introduction of a limi-
order phase transition arourg=-1.5. Theresults are in tation in the number of interacting agents reduces drastically
agreement with the analysis of Canef28] and recall the the number of computations on the grid per time step. In a
Hubbard model for small to intermediate values of thesystem where all the agents interact with each other this
local interaction[44]. As also suggested in Ref25], the  number goes liké\2, N, being the number of active agents,
second peak is due to the large fluctuations at smalhile in our model, considering the distribution of the clus-
scales, that is, crashes and bubbles. Increasing the tinters, it is easy to see that it goes Iiké‘*. The value of\
delay means that the fluctuations tend to be smoothed anfdund for several herding parametgrsis A=0.6—1.4, so

the time series of returns approach a noiselike regime. Fahat the computational cost is much lower for the present
this reason the analog specific heat shapesrfol00 are  model. This gives one the possibility to simulate the market
basically indistinguishable. From this argument we canusing a very large range of agents. The model is able to
interpret the analog specific heat, and in particular thereproduce most of the stylized aspects of the financial time
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series, supporting the idea that crashes and bubbles are re-
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