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In the present work we introduce a stochastic cellular automata model in order to simulate the dynamics of
the stock market. A direct percolation method is used to create a hierarchy of clusters of active traders on a
two-dimensional grid. Active traders are characterized by the decision to buy,sistd= +1, or sell,sistd=−1, a
stock at a certain discrete time step. The remaining cells are inactive,sistd=0. The trading dynamics is then
determined by the stochastic interaction between traders belonging to the same cluster. Extreme, intermittent
events, such as crashes or bubbles, are triggered by a phase transition in the state of the bigger clusters present
on the grid, where almost all the active traders come to share the same spin orientation. Most of the stylized
aspects of the financial market time series, including multifractal proprieties, are reproduced by the model. A
direct comparison is made with the daily closures of the S&P500 index.
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I. INTRODUCTION

Since the successful application of the Black-Scholes
theory for option pricing[1] in 1973 more and more physi-
cists have been attracted by the idea of understanding the
behavior of the market dynamics in terms of complex system
theory, where self-organized criticality[2,3] and stochastic
processes[4,5] play important roles. The aim of the micro-
scopic models proposed so far(for general reviews see Refs.
[6,7]) is to reproduce somestylized facts[8] concerning the
temporal fluctuations of the price indices,Pstd. In particular,
the logarithmic price returns

Rstd = ln Pst + 1d − ln Pstd s1d

and the volatility, defined in the present work as

vstd = uRstdu, s2d

have been studied extensivelyf4g from an empirical point of
view. The results have shown that while long time correla-
tions are present in the volatility, a phenomenon known as
volatility clustering, they cannot be found in the time series
of returns. Moreover the latter show an intermittent behavior
that recalls in some aspects hydrodynamic turbulencef9–11g,
characterized by power law tails in the probability distribu-
tion functionspdfd. Microsimulations have demonstrated that
this kind of behavior can originate both as a stochastic pro-
cess with multiplicative noisef12–14g and as a percolation
phenomenonf15–17g.

In order to reproduce these features of real markets we
introduce a stochastic cellular automata model, representing
anopenmarket. That is, a market where the number ofactive
traders, defined as cells with spin state different from 0,
namely,sistd= ±1, evolve in time according to a percolation
dynamics. The percolation dynamics is chosen in order to
simulate the herding behavior typical of investors[18]. Ac-
cording to this, active traders gather inclustersor networks
where, following a stochastic exchange of information, they
formulate the trading strategy for the next time step. The
results obtained by the simulations are then compared with

the time series of daily closures of the S&P500 index
[18–25] over a period of about 50 years.

Moreover, recently, the fractal properties[26] of the price
fluctuations have also been investigated for different markets
[27–30]. A common feature found in these studies is the
existence of a nonlinear, multifractal spectrum that excludes
the possibility ofefficient marketbehavior[31]. The origin of
the multifractality in the financial time series has also been at
the center of discussions[32–35]. In this paper we consider
the multifractal spectrum of the price fluctuations as a styl-
ized fact of the market time series without addressing any
question about the underlying process able to generate it. The
multifractal spectrum is used as a further test for our model.

A parallel between multifractal and thermodynamical for-
malism has also been investigated. We found, in agreement
with the previous work of Canessa[25], that theanalog spe-
cific heatcan provide a good tool to characterize intermit-
tency, that is, financial crashes or bubbles, from a
thermodynamics-equivalent point of view.

II. THE MODEL

In the present work we simulate the financial market dy-
namics via a stochastic cellular automata model. The agents
of the market are represented by cells on a two-dimensional
grid, 5123128. Theith agent at the discrete time stept is
characterized by three possible states or spin orientations,
sistd=0, ±1. The valuesistd= +1 is associated with the pur-
chase of a stock whilesistd=−1 with selling. The former
states are calledactive. The cells with spin valuesistd=0 are
inactive traders. The active traders herd innetworksor clus-
ters via a direct percolation method related to aforest fire
model [15]. The information carried by the active traders,
that is, their spin state, is shared with the other members of
the cluster. The percolation dynamics allow a time dependent
herding behavior and the market can be interpreted as an
open system not bounded by conservation laws. The cluster-
ing process will be discussed in detail in the following sec-
tion.
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The trading dynamics is instead related to the synchro-
nous update of the spins of the active traders, ruled by a
stochastic exchange of information between them, similar to
a random Ising model[12,13]. A particular feature of the
present simulation is that the information is not spread all
over the grid, as in other multiagent scenarios[12,13], but it
is limited by the clusters of interaction previously defined.
The mechanism for the spin dynamics is explained in Sec.
II B.

A. Percolation clustering

One of the aims of our cellular automata model is to re-
produce theherding behaviorof active traders[18]. We refer
to herding behavior as the tendency of people involved in the
market to aggregate in networks or clusters of influence. The
traders then use the information obtained by their network in
order to formulate a market strategy. Even if the topological
structure of these networks of information is not important,
since several kinds of long range interaction are available
nowadays[13], the number of connections for each trader
must be, in any case, finite and not extended over the whole
market. In this framework a direct percolation method is
used to simulate herding dynamics between active traders. If
we assume that the neighbors of influence are those of von
Neumann(up, down, left, right), the percolation is fixed by
the following parameters.

ph: the probability that an active trader can turn one of his
inactive neighbors into an active one at the next time step,
sistd=0→sist+1d= ±1. This simulates the fact that certain
information possessed by a trader may induce apotential
trader to join the market dynamics.

pd: the probability that an active traderdiffusesand so
becomes inactive,sistd= ±1→sist+1d=0, if it has at least
one inactive neighbor. This mimics the fact that only traders
at the borders of a network, that is, the weaker links, can quit
the market.

pe: the probability that a nontrading cell spontaneously
decides to enter the market dynamics,sistd=0→sist+1d
= ±1.

The values of the adimensional parameters,ph, pd, andpe,
influence the stability of the system and the percentage of
active traders on the grid. In order to test different market
activities we fix the valuespd=0.05 andpe=0.0001 while we
tune the parameterph. At the beginning of the simulation the
grid is loaded randomly with a small percentage of active
traders and then the system is permitted to evolve according
to the previous rules. If we are in a stable range of the pa-
rameterph, after a transient period that depends both on the
parameter values and the initial number of active cells, the
number of active traders on the grid begins to fluctuate
around a certain average, as shown in Fig. 1(top). The mar-
ket can be consideredopen since the number of agents
changes dynamically in time. In this regime, the competition
between herding and diffusion produces a power law distri-
bution of the cluster size, as shown in Fig. 1(bottom),
rsSd<S−l, whereS is the cluster dimension, defined as the
number of active cells belonging to the same cluster, and
l.0, creating a hierarchy of networks. This hierarchy is

necessary if we are to take into account a real aspect of the
market, namely, that different traders also have different
trading powers. A reasonable assumption is that people hav-
ing a larger number of sources of information, so belonging
to greater clusters, can be associated with professional inves-
tors that, most likely, are able to move a greater amount of
stocks compared to the occasional investor. Using this as-
sumption we are able to define a proper weight for the trad-
ing power of different cells, as we will discuss in the follow-
ing section.

A similar percolation model has also been used to repro-
duce some statistical and geometrical features of solar activ-
ity [36,37].

B. Stochastic trading dynamics

The dynamics of the spins of the active traders,si
kstd

= ±1 for i =1, . . . ,Nkstd (where the superscriptk, from now
on, refers to thekth cluster of the grid configuration at time
step t) follows a stochastic process that mimics the human
uncertainty in decision making[13]. Their values are up-
dated synchronously according to a local probabilistic rule:
si

kst+1d= +1 with probabilitypi
k andsi

kst+1d=−1 with prob-
ability 1−pi

k. The probabilitypi
k is determined, by analogy to

heat bath dynamics with formal temperaturekbT=1, by

FIG. 1. Top: Different values of the parameterH produce dif-
ferent activities of traders on the grid. Bottom: Cluster size distri-
bution for ph=0.0485 att=9000.
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pi
kstd =

1

1 + e−2I i
kstd

, s3d

where the local fieldI i
kstd is

I i
kstd =

1

Nkstd o
j=1

Nkstd

Aij
k s j

kstd + hi
k. s4d

Aij
k std are time dependent interaction strengths between

agents andhi
kstd is an external field reflecting the effect of

the environmentf13g. The interaction strengths and the ex-
ternal field change randomly in time according toAij

k std
=Ajkstd+ahi jstd and hi

kstd=hzi
kstd. The variablesjkstd hi jstd,

and zi
kstd are random variables uniformly distributed in the

interval s−1,1d with no correlation in time or space. The
measure of the strengths of the previous terms,A, a, andh,
are constant and common for all the grid.

In this contest the dynamics of the price indexPstd can be
easily derived if we assume that the index variation is pro-
portional to the difference between demand and supply,

dP

dt
~ xP, s5d

and using a weighted average for the orientation of the spins,

xstd = b o
k=1

Nclstd

o
i=1

Nkstd

Nkstdsi
kstd, s6d

whereNclstd andNkstd are, respectively, the number of clus-
ters on the grid and the size of thekth cluster, whileb is a
normalization constant. The relations6d follows from the
assumption of proportionality between the financial power
of an active cell and the size of the cluster to which it
belongs. A justification of this relation is that professional
investors, able to move larger amounts of capital, are
more likely to be linked with a large number of other
investors than the occasional traders. From Eq.s5d we find
that the logarithm of the price returnss1d, that is, the
fundamental quantity we aim to model, is proportional to
the average orientation defined in Eq.s6d, Rstd~xstd.

III. NUMERICAL RESULTS

We compare the results of our model with the Standard &
Poor 500(S&P500) index that is one of the most widely used
benchmarks for U.S. equity performance. The database ana-
lyzed is composed of the daily indices from3/1/1950 to
18/7/2003 for a total of 13 468 data. The time series of the
index pricesPstd is converted into the logarithmic returns(1)
and then normalized over the time intervalT,

rstd =
Rstd − kRstdlT

s„Rstd…
. s7d

wherek¯lT denotes the temporal average ands is the stan-
dard deviation. In this way all the sets of returns will have
zero average ands=1.

Before discussing the results we briefly describe the be-
havior of the cellular automata with respect to changes of the

parameters. Regarding the percolation, the herding parameter
ph, as previously seen, determines the concentration of active
traders on the grid. For a low concentration the active traders
will be distributed in small clusters and the information will
be extremely split up on the grid. In this case large coherent
events will be more rare. A higher concentration, where clus-
ters of the order of a thousand cells are present, allows large
events to occur with higher frequency. In fact, the phase
transition of large clusters can easily trigger a crash or a
bubble in the market. Time series related to a higher herding
parameter are therefore more intermittent. We can then infer
that a market made by small groups of traders behaves like a
noisy market, while big crashes or bubbles must necessarily
be related to the interaction of large networks and so to a
kind of crowd behavior. For most of the simulations we fixed
the parameterph=0.0493 in order to have bigger clusters,
with Smaxstd of the order of 2500 cells.

The strengthA also plays an important role in the trading
dynamics. Withph fixed, this parameter is related to the in-
termittency of the system. Both for large values of the activ-
ity sA.10d and forA→0 we observe an approach of the pdf
toward a Gaussian-like shape. That is, very large fluctuations
become more and more rare, andA can be regarded as a
temporal scale for the system, similar to the activity param-
eter in the Cont-Bouchaud model[16]. In spite of this some
large fluctuations can be still identified. This is probably one
of the main differences between the Cont-Bouchaud model
and the present. In fact Monte Carlo simulations of the
former [17] show that an increase of the activity brings a
rapid convergence toward a Gaussian distribution because a
large number of clusters are trading at the same time follow-
ing a random procedure of decision making[16,17]: there
are no clusters that can influence the market more than others
and so the resulting global interaction is noiselike. In our
model fluctuations are always allowed because of the heat
bath dynamics. Clusters of active traders can always be sub-
jected to phase transitions, independent of the state of other
clusters, creating a displacement between demand and sup-
ply.

FIG. 2. Top: Normalized logarithmic returns for the S&P500.
Bottom: Time series of returns reproduced with the simulation with
ph=0.0493,A=1.8, andh=0.
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In order to reproduce the behavior of financial time series
we work with 1.5,A,2.5. In this range there is a nonlinear
dependence of the intermittency onA. The value of the pa-
rametera is fixed by the relationa=2A, already used in the
work of Krawiecki et al. [13]. However, we note that the
ratio a/A is actually not essential in reproducing the inter-
mittency found in real data. Even the parameterh does not
have a central role in the simulation, as long ash!1. In fact,
the percolation dynamics of the active traders already intro-
duces a natural noise. In most of the runs we simply seth
=0.

Now we discuss the results of the cellular automata. In
Fig. 2 (top) and Fig. 2(bottom) the normalized logarithmic
returns of the S&P500 and of the simulation are shown, re-
spectively. The average number of active traders, in the
stable regime, is<16 000, as shown in Fig. 1(top). The
model reproduces the intermittent behavior of the S&P500
time series, as expressed by theleptokurticpdf of Fig. 3. The
tails of the distribution follow a power law decay, reflecting
the fact that large coherent events, far from the average, are
likely to occur with a frequency higher than expected for a
random process(where the shape would be a Gaussian).
These large events are related to financial crashes or bubbles
of the market and, in our model, to a phase transition in the
spin state of large networks of active traders, as we will
discuss further on. From a power law fit,rsrd< r−1−g (for
ur u.2), we find g<3 for both the S&P500 and the model,
confirming the good agreement between the two.

The problem of finding the best distribution describing the
price returns is a very important issue from a practical point
of view [4]. The standard Black-Scholes theory for option
pricing [1,4,5] assumes that the returns are normally distrib-
uted. This fact has been proven to be empirically false, as
shown also in Fig. 3(see Ref.[4] for a general reference).

Finding a more appropriate distribution would be an impor-
tant improvement in this field of research.1

In order to understand the trading dynamics of the au-
tomata we also show two snapshots of the grid configuration,
the first during a normal session, Fig. 4(top), and the second
during a crash, Fig. 4(bottom). During the normal session
the orientations of the spins are distributed uniformly over
the various clusters and there is no sharp difference between
demand and supply. The situation is different during a crash.
In this case the clusters at the top of the hierarchy, the bigger
ones, play a fundamental role. In fact they undergo a phase
transition where the greatest part of their spins share the
same orientation. The capacity of the clusters to generate a
coherent orientation of the spins, and hence of their trading
state, can be interpreted in terms of a multiplicative noise
process[5,22], where the collective synchronization arises as
a result of the randomly varying interaction strengths be-

1An intriguing framework of investigation has been provided by
the nonextensive statistical mechanicsproposed by Tsallis
[38–40,23,24]. A more complete discussion on this important topic
is beyond the scope of this paper and will be discussed in future
work.

FIG. 3. Probability distribution function for the S&P500 com-
puted with daily data from 31/1/1950 to 18/7/2003 and the model.
A Gaussian is also plotted for comparison. The parameters used are
ph=0.0493,A=1.8 andh=0.

FIG. 4. Top: Snapshot of the grid during a normal trading pe-
riod. The black cells are the buyers while the white ones are the
sellers. The parameters used in this simulation areph=0.0493,A
=1.8, andh=0. Bottom: The same simulation during a crash. Large
clusters of sellers are indicated by arrows.
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tween agents. The peculiarity of our model is that crashes or
bubbles(sudden price changes) are related not to a phase
transition of the whole market[12,13] but rather to a phase
transition in one or more of the larger clusters that have a
greater influence on the trading session. This behavior is
probably closer to the real market where the synchronization
of trading opinion is more likely to happen between large
groups of traders than over the whole market.

The temporal correlations of the logarithmic returns and
of the volatility are investigated via the autocorrelation func-
tion, defined as

cstd = o
t=1

T−t

xst + tdxstd, s8d

whereT is the length of the time series andt is a time delay
for the normalized variablexstd. The results for both the
model and the S&P500 are shown in Fig. 5stopd and Fig. 5
sbottomd, respectively. While the temporal correlation for the
returns is lost almost immediately, the volatility manifests a
slow decay in time, related to the phenomenon of volatility
clustering. The previous temporal dependencies have been
found in both real data and in the simulation.

IV. MULTIFRACTAL ANALYSIS

It is also worth pointing out that financial time series
present an inherentmultifractality [26]. In the past few years
the work of many authors[27–30] has been addressed to the
characterization of the multifractal properties of financial
time series, and nowadays multifractality can be considered
as a stylized fact. In order to study the multifractal properties
of our model we use thegeneralized Hurst exponent[41],
Hsqd derived via theq-order structure function,

Sqstd = kuxst + td − xstduqlT ~ tqHsqd, s9d

wherexstd is a stochastic variable over a time intervalT and
t the time delay. The generalized Hurst exponent, defined in

Eq. s9d, is an extension of the Hurst exponentH introduced
in the context of reservoir control on the Nile river dam
project, around 1907f26,42g. This technique provides a sen-
sitive method for revealing long-term correlations in random
processes. IfHsqd=H for every q the process is said to be
monofractal andH is equivalent to the original definition of
the Hurst exponent. This is the case of simple Brownian
motion or fractional Brownian motion.

If the spectrum ofHsqd is not constant withq the process
is said to be multifractal. From the definition(9) it is easy to
see that the functionHs1d is related to the scaling properties
of the volatility. By analogy with the classical Hurst analysis,
a phenomenon is said to be persistent ifHs1d.1/2 and an-
tipersistent ifHs1d,1/2. For uncorrelated increments, as in
Brownian motion,Hs1d=1/2. In Fig. 6 a comparison is
shown between the multifractal spectra of the model and the
S&P500 obtained from the prices time series. It is clear that
both processes have a multifractal structure and the price
fluctuations cannot be associated with a simple random walk
as in the classicalefficient market hypothesis[31].

The multifractality of the time series can also be dis-
cussed in terms of thermodynamic equivalents, according to
multifractal physics[43–45,25]. In this approach we divide
the time seriesxstd for t=1, . . . ,L into N equal subintervals.
Then we can write the following measure for each of these:

mistd =
uxst + td − xstdu

o
n=1

N
uxst + td − xstdu

, s10d

with i =1, . . . ,N andt the time delay. The quantitymistd can
be viewed as a normalized probability measure. The corre-
sponding generating function is given by

Zsq,Nd = o
i=1

N
mistdq ~ N−xq, s11d

which is an analog of the partition function in thermodynam-
ics. According to Ref.f43g the scaling exponentxq is directly

FIG. 5. Top: Autocorrelation function for the price returns. Bot-
tom: Autocorrelation function for the volatilities. In both the graphs
the parameters used for the model areph=0.0493,A=1.8, andh
=0.

FIG. 6. Multifractal spectra for the S&P500 in the period
31/1/1950 to 18/7/2003 (top) and the model(bottom). For the
latter ph=0.0493,A=1.8, andh=0.
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related to the generalized multifractal dimensionDq f26g,

xq ; sq − 1dDq. s12d

If we considerxq as thefree energyof our system, Eq.s12d
provides a link between the classical thermodynamical for-
malism and multifractality. Assumingq as an equivalent
temperature, we can define an analog specific heat
f43,45,25,46g,

Cq = −
]2xq

] q2 . s13d

The previous equation forCq can also be written in terms
of singular measure formalism[47]. In this framework we
define a measurees1,td as

es1,td =
uxst + 1d − xstdu

1

L − 1o
t=1

L−1

uxst + 1d − xstdu

. s14d

We can then generate a series of measures on shorter in-
tervals of lengthd, esd , ld whered is an integer power of 2
andl is the index of the first point of the subsegments at that
resolution. The average measure in the intervalfl , l +dg is

esd,ld =
1

d
o
l!=l

l+d−1

es1,l!d s15d

for l =0, . . . ,L−d. In this case we have a scaling property for
the ensemble average with respect to the scaled:

kesd,ldl ~ d−Kq. s16d

In a multifractal process the exponentKq is a nonlinear func-
tion of q-related to the intermittency of the time series and to
the generalized dimension viaf48,49g

sq − 1dDq = q − 1 −Kq. s17d

From Eqs.s13d and s17d we have thatf46g,

Cq =
]2Kq

] q2 . s18d

Following Ref.f25g we have found the analog specific heat
for both the S&P500 and for the price time series generated
by our model, see Fig. 7. Fort=1 we observe a double-
humped shape for both the model and the empirical data. If
we take longer-time delays the shoulder on the right-hand
side disappears, leaving only a sharp peak, similar to a first-
order phase transition aroundq=−1.5. Theresults are in
agreement with the analysis of Canessaf25g and recall the
Hubbard model for small to intermediate values of the
local interactionf44g. As also suggested in Ref.f25g, the
second peak is due to the large fluctuations at small
scales, that is, crashes and bubbles. Increasing the time
delay means that the fluctuations tend to be smoothed and
the time series of returns approach a noiselike regime. For
this reason the analog specific heat shapes fort=100 are
basically indistinguishable. From this argument we can
interpret the analog specific heat, and in particular the

second peak for low time delays, as a way to characterize
crashes, or in general the degree of intermittency in a time
series. The difference in the shapes and heights of the
shorter peak fort=1 is due to a slightly different correla-
tion of the fluctuations in the two time series. Moreover,
in the model we can link the shorter peak to the physical
phase transition in the spin state of a network of traders.

V. CONCLUSIONS

In this paper we have introduced a stochastic cellular au-
tomata model for the dynamics of the financial markets. The
main difference between our model and other stochastic
simulations based on spin orientation of agents[12,13] is the
temporal evolution of the networks of interaction and there-
fore the concept of an open market. The active traders follow
a direct percolation dynamics in order to aggregate in net-
works of information. This makes our simulation, even if
still a raw approximation, surely closer to the real market,
where no conservation rules for the number of agents can be
claimed. Crashes and bubbles can be interpreted as a syn-
chronization of the spin orientation of the more influential
networks in the market. Moreover, the introduction of a limi-
tation in the number of interacting agents reduces drastically
the number of computations on the grid per time step. In a
system where all the agents interact with each other this
number goes likeNa

2, Na being the number of active agents,
while in our model, considering the distribution of the clus-
ters, it is easy to see that it goes likeNa

2−l. The value ofl
found for several herding parametersph is l<0.6–1.4, so
that the computational cost is much lower for the present
model. This gives one the possibility to simulate the market
using a very large range of agents. The model is able to
reproduce most of the stylized aspects of the financial time

FIG. 7. Top: Analog specific heat for the S&P500 from
31/1/1950 to 18/7/2003 for two different time delays, namely,t
=1 andt=100. A sharp peak is clearly visible aroundq=−1.5. The
second peak on the right-hand side disappears increasing the tem-
poral delay. TheCq curves have been computed for the logarithm of
the price using the algorithm in Ref.[47] for Kq. Bottom: Analog
specific heat for the model with parametersph=0.0493,A=1.8, and
h=0. The double-humped shaped for small temporal delays is vis-
ible also here.
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series, supporting the idea that crashes and bubbles are re-
lated to a collective synchronization in the trading behavior
of large networks of traders, where the information is ex-
changed according stochastic interaction between them.
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